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This is the final report for the AFOSR' sponsored program "Dense Modifiable In-

terconnections Utilizing Phrtorefractive Volume Holograms" (AFOSR-89-0045). Here we

present an overview of the accomplishments which have been described in more detail m

the semi-annual reports as well as the published papers that are listed at the end of this

report.

The basic architecture for holographic optical neural networks [1,21 is shown in Fig.

1, which can be a single stage of a multilayered system. Neurons in one plane are intercon-

nected with the neurons in other planes via holographic gratings stored in light sensitive

media such as photorefractive crystals. Specifically, the light from a pixel at the input

neural plane is collimated and diffracted by a holographic grating. The diffracted light

is then focused by a lens onto a pixel at the output neural plane. The goal is to train

such a system, through modifications of the holographic interconnections, in order for it to

perform desirable computations. The success of this learning procedure depends critically

upon the optical hardware and the learning algorithm. It has been the objective of this

research program to realize dense modifiable interconnections in such adaptive systems

using photorefractive volume holograms.

A basic geometrical limitation on the density of interconnections achievable through

volume holograms is due to the finite volume of photorefractive crystals. Let N be the

number of resolvable points in any one dimension for both the neural planes and the

hologram. There are N' pixels in both the input and output planes. On the other hand,

the total number of gratings available in the hologram is N3 . Therefore, if we want to

interconnect independently each of the input neurons to all the output neurons, only N3 / 2

pixels from the N2 available sites at each plane can be selected for the placement of

neurons. The sampling procedure [3,4] is described as follows. Each time we attempt to

add a neuron to a new site at the input (output), we check to see whether this new site

is already conne-ted to one of the neurons selected previously at the output (input) by

an existing grating. If it is, we eliminate this site from the sampling grid; if it is riot, we

place a neuron at this site, which implies that gratings are established to connect this new ]

neuron to all the neurons now selected at the output (input). By iternting this procedure,

we can find sets of fractal sampling grids that must be used in the input and output planes .

so as to guarantee that all the interconnections between the input and output planes Jet
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can be independently specified.. A large family of sampling grids were derived usirg this

procedure.

To solve a practically significant problem, neural-net learning algorithms typically re-
quire at least thousands of iterations (or, modifications of synaptic interconnections). In
the optical implementation shown ir, Fig. 1, each iteration requires an additional holo-

graphic exposure to be made in the same crystal. Therefore, a very large number of holo-
grams must be superimposed in a learning architecture. The basic problem with writing a
large number of photorefractive holograms is that during the exposure of new holograms,

previously recorded holograms decay due to a photogenerated increase in the free carrier
density. AL a result, the overall diffraction efficiency becomes inversely proportional to the
number of holographic exposures [5]. This rapid decrease of diffraction efficiency severely
limits the extent to which optical neural networks can be trained. One method to overcome
this problem is dynamic copying [6]. The basic idea is to transfer the multiply exposed
hologram to a second medium, and then copy it back with a single exposure to rejuvenate
the primary hologram. As a result, the overall diffraction efficiency after copying becomes
independent of the number of holographic exposures used to form the original hologram.

Several variations of this method have been demonstrated, including copying with with
an all-optical feedback loop [7], with a pair of active phase conjagate mirrors [8), between
two photorefractive media, and with an optoelectronic feedback loop. These methods al-
low us to construct optical learning networks capable of an arbitrarily long sequence of

adaptations.

The types of learning that can be implemented on an optical network fall into two
broad catagories depending on the characteristics of the hidden layer representation: learn-

ing with distributed representation and learning with local representation. In the dis-
tributed learni ag, the network is trained so that a large fraction of hidden units is turned
on for each in,.ut, while for learning with local representation, only one or . small number

of hidden units are turned on for each input.

Examples of distributed learning networks include Kanerva's network (91, the Back-

propagation network [10), the ALL network [11,12], and the tiling network. In the Kan-
erva's network, the weights of the first layer interconnections are random, and each input
is mapped to a sparse, distributed hidden representation. The second layer, traiiued by
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the sum-of-outer-products rule,-perforn, cla.ssification on the distributed hidden repre-

sentation. Figure 2 shows the optical implementation of the Kanerva's network, which

was constructed and trained for hand-written character recognition. After training with

104 patterns, all the training patterns were recognized correctly by the system. Figure

3 shows some examples of the input patterns, their distributed hidden representations,

the responses of the output units. The position of the switched-on output units indicated

which character in the alphabet is the input. The trained network was also tested with

520 handwritten character patterns (20 patterns from each class) that were not in the

training set. 311 out of the 520 testing patterns were correctly ciassified, giving an average

recognition rate of about 60%. This recognition rate is much better than random guessing

(4%), but far below what is requi.ed for a useful character recognition system. The reason

for the relatively poor performance on the test set is the choice of training algorithm used,

specifically the fixed first layer weights and the limited number of training cycles for the

second layer. This same system can be used to implement algorithms in which both layers

are fully trained with error driven algorithms such as Backpropagation and ALL, which,

in computer simulations, give much better performance.

Learning in both the Backpropagation network and the ALL network aims at reduc-

ing the output error at each iteration. While the former requires that the output error be

propagated backwards through the network, the latter does not. Although this advantage

comes at a price of relatively slow learning rate, the simplicity of the ALL network makes

it very attractive for optical implementation in the near future. Both the Backpropagation

and ALL networks maintain a fixed size during the training and only the interconnec-

tions are modified. The tiling network, however, does not have a fixed size. Rather, it

grows during training. Specifically, the network starts with a single hidden unit that is

trained with the perceptron algorithm, and more hidden units are added only when they

are needed. Compared with local learning, distributed learning can generally yield small

networks that can generalize well from a relatively small set of examples. However, these

networks are very difficult to train.

Local representation networks are relatively easy to train, but they usually require a

relatively large size and large number of training samples. A typical example is the Radial

Basis Function (RBF) network. The first layer of the network is trained to generate an
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array of basis function centers. When. an input is given, the network will calculate the

distance between the input and the centers, and a hiddea unit will be turned on w' !n

the input is close to the corresponding center. The output response is a weighted sum the

hidden layer response. Optical RBF networks have been constructed using optical memory

disks [13] and spatial multiplexing parallel architecture [14], and have been successfully

trained for hand written character recognition.

Recently, a two-layer local-representation optical network has been constructed and

trained to recognize in real time "Denk", who is a student in our group. The network is

implemented with liquid crystal spatial light modulators for the neural planes and lithium

niobate photorefractive crystals for the interconnections. The network has approximately

60,000 units at the input plane, 30 hidden units, and a single output unit. The output unit

is turned on whenever the network classifies the input as Denk. The network is trained

with a video segment 2 minutes long, from which 180 frames were selected for training.

Specifically, each hidden twit was trained to respond to 6 frames. The trained network

classified the rest of the training tape almost flawlessly. The system was then tested by

presenting through a TV camera real time input of Denk and other members of our group.

The system almost never misclassified other people as Denk and exhibited remarkable

tolerance to changes in aspect, illumination, and facial expression.

, LI L2

Input plane Output plane

Volume hologram

Figure 1. Basic architecture for holographic optical neural networks.
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